Ph.D. student in physics at Massachusetts Institute of Technology.
15:50 UTC
As physicists build ever more advanced particle accelerators, corresponding simulation softwares demand more computational resources. Our experiment, IsoDAR, is no exception to this. To reduce computational overhead of high-fidelity simulations, we used Julia to develop machine learning models that can, with reasonable accuracy, predict the behavior of a beam traversing our accelerator. These surrogate models have the potential to transform the way physicists design and optimize accelerators.